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Insights into real-time chemical processes in a
calcium sensor protein-directed dynamic library
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F. Javier Cañada 1, Jesús Jiménez-Barbero6, Ana Martínez 1 & Ruth Pérez-Fernández1

Dynamic combinatorial chemistry (DCC) has proven its potential in drug discovery speeding

the identification of modulators of biological targets. However, the exchange chemistries

typically take place under specific reaction conditions, with limited tools capable of operating

under physiological parameters. Here we report a catalyzed protein-directed DCC working at

low temperatures that allows the calcium sensor NCS-1 to find the best ligands in situ.

Ultrafast NMR identifies the reaction intermediates of the acylhydrazone exchange, tracing

the molecular assemblies and getting a real-time insight into the essence of DCC processes

at physiological pH. Additionally, NMR, X-ray crystallography and computational methods are

employed to elucidate structural and mechanistic aspects of the molecular recognition event.

The DCC approach leads us to the identification of a compound stabilizing the NCS-1/Ric8a

complex and whose therapeutic potential is proven in a Drosophila model of disease with

synaptic alterations.
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Sanders and Lehn groups reported the concept of Dynamic
Combinatorial Chemistry (DCC) in the mid-1990s1,2. By
using reversible chemical reactions, DCC establishes mole-

cular networks under thermodynamic control that respond to
external stimuli3–5.

DCC systems that employ a protein to direct assemblies of
small molecules at dynamic equilibrium are highly interesting.
Huc and Lehn reported the use of carbonic anhydrase as a
template proving its inhibition by a dynamic combinatorial
library (DCL) of imines created in situ6. Since then, successful
applications discovering novel enzyme inhibitors have been
reported7. On protein-directed DCC experiments, one designs the
system rather than the molecule allowing the protein to find its
best ligand in situ8–10.

The Neuronal Calcium Sensor 1 (NCS-1) is a high-affinity
Ca2+-binding protein predominantly expressed in neurons11,12.
NCS-1 is a highly conserved protein13 that regulates synapto-
genesis, synaptic transmission and is critical for learning and
memory11,14–16. The Drosophila Neuronal Calcium Sensor 1
(dNCS-1 or Frequenin-2) displays a large, concave hydrophobic
crevice onto which the guanine exchange factor Ric8a binds15,17.
The interaction between NCS-1 and Ric8a regulates synapse
number and probability of neurotransmitter release, thus con-
stituting a pharmacological target for synaptopathies15,18. NCS-1
contains a C-terminal dynamic helix (called H10) that works as a
built-in competitive inhibitor and inserts into the crevice to
prevent Ric8a binding (Fig. 1). In fact, inhibitors of this protein-
protein interaction (PPI) target the NCS-1 crevice and stabilize
the orientation that presents the helix H10 inside the crevice. This
topology in turn, decreases synapse number and enhances asso-
ciative learning in a Fragile X syndrome animal model18,19. Fol-
lowing the same reasoning, it would be tempting to hypothesize
that an stabilizer of this PPI would permit to enhance synapse
number and therefore constitute a pharmacological target of
neurodegenerative diseases, where synapse number is abnormally
low (Fig. 1)20,21. The low number of ligands reported for dNCS-
118,19 makes the DCC approach attractive as a genuine discovery

tool for modulators able to unveil the mechanism to control
neurotransmission22 and synaptogenesis.

NMR spectroscopy has been reported as a particularly useful
technique to analyze protein–ligand interactions (e.g., STD-NMR,
tr-NOESY) and to understand reaction mechanisms using
Ultrafast NMR (UF-NMR)23,24.

Herein, we apply the DCC approach targeting dNCS-1 at low
temperatures and physiological pH with an efficient catalyst to
accelerate the DCL equilibration. UF-NMR technique is used to
monitor in real-time the details of the acylhydrazone exchange
process. Next, ligand-based NMR methods (STD-NMR, tr-
NOESY and DOSY) in the presence of dNCS-1 are performed
to get further insights into the interaction aspects of the chemical
process. Moreover, the affinity of the amplified molecules is
measured using fluorescence techniques and the modulation of
the NCS-1/Ric8a interaction is tested in a protein-protein binding
assay. These methodologies together with blood–brain barrier
penetration assays, cell toxicity studies and ADME predictions
permit to identify compound 3b as the most effective molecule
able to stabilize the NCS-1/Ric8a complex. Furthermore, the
structure of the homologous hNCS-1 bound to 3b is solved by X-
ray diffraction to understand at the atomic level the basis of its
ability to modulate the protein-protein interaction. Importantly,
the therapeutic potential of compound 3b is also assessed in vivo,
showing that 3bmediates the recovery of normal synapse number
and improves the locomotor activity in a Drosophila model for
Alzheimer´s disease.

Results
Acylhydrazone exchange catalyst at low temperature. Most of
the protein-directed DCC approaches reported to date have been
tested under room temperature conditions7,8. However, in our
case, besides the standard requirements such as compatibility
with the biological target and short equilibration time, the reac-
tion must occur at neutral pH and low temperatures to increase
the stability time of dNCS-1.

To conduct acylhydrazone exchange at neutral pH, Greaney
and coworkers used high concentrations of aniline as a
nucleophilic catalyst in a protein-directed DCL25. The aniline
catalyzed the acylhydrazone exchange through a Schiff-base
intermediate. We started our DCL by reacting aldehyde 1
(Fig. 2a), with an excess of five acylhydrazides (2a–2e) at 4 °C
in the absence and presence of the protein. Unfortunately, the
required high concentrations of aniline interfered with the
techniques employed for the analysis of protein–ligand interac-
tions. Therefore, we studied different p-substituted aniline bases
such as p-aminophenol, p-anisidine and p-phenylenediamine to
compare their efficiency as nucleophilic catalysts, given the
capacity of electron donating groups on p-position of the ring for
increasing the basic character of the corresponding Schiff-bases
(Fig. 2b)26.

HPLC-MS was used to screen the proposed catalysts for the
formation of the acylhydrazone 3b. The reaction was performed
at 4 °C in the presence and in the absence of the p-substituted
aniline derivatives. The reactions were initiated by the addition of
the aldehyde 1 and the formation of 3b (Fig. 2c) was monitored
over time. The resulting data were fit to a pseudo-second-order
rate equation (see Supplementary Figs. 1, 2 and Supplementary
Methods) and the kinetic parameters are summarized in Fig. 2d.

Under our experimental conditions, p-phenylendiamine and
p-anisidine showed superior catalytic activity compared to aniline.
Fig. 2c illustrates the time course of the reaction. In the absence of
the catalyst (Fig. 2d), the half-time (t1/2) of the reaction is 303min
(Kobs= 0.61 ± 0.02M−1 s−1). As expected, aniline enhanced
the rate of acylhydrazone formation reducing the t1/2 from 303
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Fig. 1 The complex between NCS-1 and Ric8a as a target for
synaptopathies. Schematic representation of the regulation mechanism of
the PPI target with small molecules. Examples of pathologies associated
with an abnormal synapse number and the modulatory effect (decrease or
increase in synapse number) exerted or expected by the small molecule
modulators are also given. The key NCS-1 C-terminal helix is represented as
an orange cylinder
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to 101min (Kobs= 1.6 ± 0.1M−1 s−1). However, the t1/2 for p-
phenylendiamine and p-anisidine was highly reduced from 303min
to 53min (p-phenylendiamine, Kobs= 3.1 ± 0.8M−1 s−1) and 55.5
min (p-anisidine, Kobs= 3.0 ± 0.2M−1 s−1), respectively. The
reaction is completed after 2.5 h. Due to solubility reasons we
decided to use p-anisidine instead of p-phenylendiamine as catalyst.

Real-time acylhydrazone exchange mechanism. NMR experi-
ments were then conducted to monitor the dynamic acylhy-
drazone exchange in real-time and to confirm the proposed
mechanisms in the absence (path i) and in the presence (path ii)
of the catalyst at physiological pH (Fig. 3).

Initially, the products and intermediates participating in the
reaction between aldehyde 1 and acylhydrazide 2b were identified
in the absence of the catalyst (Fig. 3a) using standard 1D-1H-
NMR spectra acquired in a sequential manner (Fig. 3b).
Intermediate I (green) was identified by analyzing their 1H-
NMR signals (the signal at δ5.25 ppm corresponds to the H on
the carbinolamine carbon while that at δ7.79 ppm, represents the
aromatic H ortho to the nitro group). These signals disappear as
the final product is being formed. In fact, the formation of 3b can
be followed by the increasing presence of the imine-type 1H-
NMR signal at δ 8.13 ppm (purple). Although the mentioned
NMR signals of intermediate I and 3b are already present in the
initial recorded NMR spectrum, the aldehyde signals completely
disappeared after 24 h. As expected, at physiological pH, the
acylhydrazone formation is rate limited by the dehydration step.

Similar sequential 1D-1H-NMR spectra were recorded to study
the catalytic pathway adding 2b to the mixture of the catalyst

(p-anisidine) and 1. However, in this case, the intermediates
could not be identified due to the higher speed of this process and
to the severe overlapping of the NMR signals arising from the
mixture. Therefore, we considered the use of 2D-NMR to get
better signal dispersion.

The so-called ultrafast 2D-NMR (UF-NMR) method was
employed, since it has been demonstrated that it may be used to
monitor chemical reactions in-situ23,24. In particular, 2D-UF-
TOCSY experiments were recorded to identify the intermediates
formed upon adding 2b, using a fast mixing device, into the NMR
tube containing a solution of 1 and p-anisidine. The p-anisidine
concentration was 0.5 equivalents with respect to 1 to be able to
detect the three different p-anisidine states (free state, Schiff-base,
Intermediate II).

Figure 3c shows a selection of different UF-TOCSY experi-
ments recorded at different times (see video in the Supplemen-
tary Movie for the sequence of the five hundred UF-TOCSY
recorded spectra and Supplementary Fig. 12). Initially, the NMR
signals for the imine-type proton, the aromatic protons of the
aldehyde and the p-anisidine, both taking part in the Schiff-base
(see Supplementary Fig. 11) were readily identified (red). At
7 min, the signal of the imine proton of 3b was already observable
(purple), while the NMR signals of the protons at p-position from
the released p-anisidine catalyst (blue) were evident. The process
finished after 40 min, but it was not possible to confirm the
presence of the Intermediate II. Furthermore, a small amount of
Intermediate I (11%) was observed in the UF experiments as
result of the coupling between aldehyde 1 and acylhydrazide 2b
(Supplementary Figs. 13, 14 and Supplementary Table 4).
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Experiments with other acylhydrazides were also performed
confirming these results.

dNCS-1 dynamic combinatorial library. After establishing
p-anisidine as catalyst, the DCL approach was attempted by
mixing aldehyde 1 (Fig. 4a) with five acylhydrazides (2a–2e) in
the presence of dNCS-1. The DCL control was also performed in
the absence of the protein. The selection of the aldehyde and the 5
acylhydrazides was based on previous DCL experiments in which
the building blocks reactivity and their concentrations were
carefully assessed to ensure the full solubility of the different
components. The stability of the protein under the experimental
conditions (DMSO tolerance and stability over time) was also
tested using fluorescence and NMR techniques (Supplementary
Figs. 15, 16 and Supplementary Methods). The equilibration was
completed after 5 h (Fig. 4a) and the acylhydrazones were iden-
tified by HPLC-MS (Supplementary Figs. 4–8).

Aldehyde 1 could not be detected, indicating that it was
continuously being sequestered as an acylhydrazone compo-
nent. The reversibility of the DCL was evident, since an
identical equilibrium distribution to that shown in Fig. 4a was
obtained when two different starting points were employed.

The observed degree of amplification was 3b > 3e ≥ 3d > 3a. The
precise composition of the DCL (with and without dNCS-1),
was assessed by measuring the relative peak area (RPA). Indeed,
the normalized change of RPA was used to quantify the protein
influence in the final outcome (Supplementary Figs. 9, 10 and
Supplementary Tables 1, 2 and 3)28. The presence of
acylhydrazone 3c was clearly reduced in presence of dNCS-1
indicating a lack of significant affinity for dNCS-1. Note that
compounds 3a–3e can exist as E/Z isomers of the C=N bond.
Quantum mechanics calculations of the geometries for the E/Z
stereoisomers of 3a–3e revealed that isomer E is preferred; both
in vacuum and in water (Supplementary Table 6). Interestingly,
the calculated pKa for the acylhydrazone NH (8.0 and 8.5 for Z
and E isomers, see Supplementary Figs. 19 and 20) of
compound 3b shows the acidic nature of this NH proton,
which strongly suggests that the isomerization from the Z to the
most stable E isomer may easily occur in the reaction medium
at pH 8.

DOSY-NMR and tr-NOESY-NMR experiments were also
recorded to follow the exchange process. The obtained DOSY
spectra in the presence of dNCS-1 revealed that the formed
products displayed larger diffusion coefficients than the initial
components, in agreement with their larger size increase (Fig. 4b).
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Moreover, the presence of protein-bound products was further
assessed by the presence of negative cross-peaks for the
acylhydrazones in the tr-NOESY experiments, while the reactants
and the catalyst only displayed positive and zero-quantum cross-
peaks (Fig. 4c).

Additional probe of the existence of a protein template effect
was extracted from the NMR analysis of the evolution of the
mixture of 3c (extremely weak or non-binder) and 2b with
dNCS-1 (Fig. 4d). The 1H-NMR spectra revealed the presence of
signals at the aromatic region assigned to 3b as well as a triplet at
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δ 2.2 ppm. corresponding to 2c, the acylhydrazide precursor of
3c. Thus, dNCS-1 induces the synthesis of 3b, a dNCS-1 ligand, at
the expense of 3c, which is not bound to the protein.

NMR binding studies and compounds epitope mapping. The
analysis of the STD-NMR spectra29 further identified four acyl-
hydrazones as dNCS-1 binders (Fig. 5), while 3c was not recog-
nized. Compound 3b displayed the largest STD intensities.
Moreover, the STD analysis permitted to map its binding epitope,
revealing structural details of the dNCS-1/3b binding mode.

NCS-1 affinity and NCS-1/Ric8a complex modulation.
Fluorescence-based experiments with 3a–3e were carried out to
estimate their affinity to dNCS-1. As shown in Fig. 6a, the binding
of 3a, 3b and 3d quenches the fluorescence of tryptophans W30

and W103 located in the dNCS-1 hydrophobic cavity17. A similar
effect was observed when Chlorpromazine (CPZ), an anti-
psychotic drug and a well-known dNCS-1 binder18, was used as
control. The apparent Kd for 3a (Kd= 32 ± 2 μM), 3b (Kd= 43 ±
6 μM) and 3d (Kd= 61 ± 9 μM) were slightly larger than that of
CPZ (Kd= 12 ± 2 μM), suggesting the existence of a similar
binding affinity of all these molecules to dNCS-1. Compound 3c
did not show affinity for dNCS-1 while the limited solubility of 3e
under the experimental conditions precluded the acquisition of
the data. Therefore, 3c and 3e were discarded for further studies.

Binding assays with NCS-1 and Ric8a in co-transfected HEK
cells were carried out to study the modulation effect of
compounds 3a, 3b and 3d in the protein-protein interaction
(Fig. 6b). CPZ, a reported mild inhibitor of the NCS-1/Ric8a
interaction18, was also included for comparison purposes.
Interestingly, our data showed that compounds 3b and 3d
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promote the stabilization of the NCS-1/Ric8a interaction whereas
3a is an inhibitor similar to CPZ.

In vitro permeability. Taking into account that one of the main
difficulties in treating central nervous system diseases is the drug’s
capacity to cross the blood–brain barrier (BBB), the ability of
compounds 3 (a, b, and d) to enter into the brain by passive
diffusion was evaluated in a Parallel Artificial Membrane Per-
meation Assay (PAMPA methodology, Supplementary Fig. 18
and Supplementary Methods)30. The PAMPA methodology is a
high-throughput technique to predict passive permeability
through biological membranes that employs a brain lipid porcine
as membrane. The in vitro permeabilities (Pe) of 3a, 3b and 3d
and ten commercial drugs were then determined. Compounds
with Pe > 4.47 × 10−6 cm s−1 are able to cross the BBB by passive

diffusion. As a result, compound 3b can be classified as CNS+
with a permeability of 12.9 ± 0.8 × 10−6 cm s−1. In contrast, 3a
and 3d did not show good permeability values (Fig. 6c, Supple-
mentary Table 5).

In silico physicochemical parameters and neuron viability. In
addition, in silico evaluation of Absorption, Distribution, Meta-
bolism and Excretion (ADME) descriptors such as log Po/w (pH-
independent partition coefficient) and log D (pH-dependent
partition coefficient) were predicted for 3b, obtaining 2.58 and
2.04, respectively at pH= 8 (Supplementary Table 7). This is in
agreement with optimal log Po/w values (as an indicator of brain-
blood partitioning) of 1.5–2.5 for drugs targeting CNS31. Fur-
thermore, the aqueous solubility (log S) of 3b was also calculated
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yielding values of −4.183/−4.675, similar to those obtained for
other CNS drugs (see Supplementary Table 8).

Finally, cell toxicity in neurons was quantified as percentage of
picnotic bodies for 3b (Fig. 6d). There were no significant
differences in 3b treated cells with those obtained with the same
amount of the drug vehicle, DMSO. Our results suggest a
physiological effect of compound 3b without affecting neuron
viability.

In light of these results, compound 3b was chosen as candidate
to understand the binding properties and to study the in vivo
effect as a promising hit compound.

The crystal structure of hNCS-1 bound to 3b. To understand
the activity of 3b as an stabilizer of the NCS-1/Ric8a interaction,
the crystal structure of the Ca2+ bound hNCS-1/3b was solved at
1.78 Å resolution (PDB code 6QI4, Table 1). Crystals belonged to
the monoclinic P21 space group. The asymmetric unit (AU)
contained two hNCS-1 molecules with an RMSD for all atoms of
1.28 Å. The feature-enhanced and the 2Fo− Fc electron density
maps, together with different map calculations (see Fig. 7a and
Supplementary Fig. 17) allowed the unambiguous modelling of
3b bound to the hydrophobic crevice of one of the two inde-
pendent hNCS-1 molecules of the AU, while the second hNCS-1
molecule only showed a PEG molecule at the 3b equivalent
position (Fig. 7). Interestingly, 3b targets the same region as other
inhibitors (Fig. 8)18,19, displaying a contact area of 303.4 Å232.

The amino acids participating in 3b recognition are: W30 and
D37 (helix H2), defining the upper wall of the cavity (Fig. 7c).
The base of the cavity is formed by F72 and V68 (helix H4), F48
(helix H3) and W103 (helix H6). As lateral walls: F85, L89 and
T92 (helix H5) and opposite to it, I51, F55 and Y52 (helix H3).
The indole group of 3b is stabilized with π-π interactions with
W30 and F85, weak water-mediated H-bonds with D37, and
hydrophobic interactions with L89 and I51. The acylhydrazone

oxygen of 3b is forming a strong H-bond with a water molecule
in the upper part of the cavity. Nitrogen atom N2 is stabilized
with van der Waals contacts with F48 and nitrogen N3 with Y52
and F55, being the latter mediated by a water molecule (w158).
Furthermore, hydrophobic interactions are observed between C11
and F48 and F72. Interestingly, the electron density map showed
that the NCS-1 bound 3b molecule only displays the E geometry,
the QM-predicted and most stable isomer (Supplementary
Table 6). Nevertheless, since 3b is present in solution as a
mixture of Z/E isomers, the molecular recognition event takes
place with a conformational selection process. In addition, the 2-
hydroxy-3-nitrophenyl ring perpendicular to the surface inter-
acted with V68 and Y52 and F72, W103 and T92. The 3b most
implicated atoms in these interactions are C13, C14 and C17. It is
important to note that the interactions observed in the hNCS-1/
3b crystal structure match the STD-NMR epitope mapping
(Fig. 5).

When comparing the 3b-free and bound hNCS-1 structures
found in the asymmetric unit, a rearrangement takes place to
allow ligand recognition: helix H3 shifts and D37 carboxyl
reorients to establish weak H-bonds between a group of water
molecules and 3b indole group (Fig. 7d). Indeed, I52 side chain
changes to permit the positioning and interaction of water w155.
Furthermore, T92 side chain, that shows double conformations in
the absence of 3b, fixes its conformation in the presence of 3b
through a H-bond with a water molecule, which permit to
establish hydrophobic contacts with the 2-hydroxy-3-
nitrophenyl ring.

The comparison of hNCS-1/3b structure with the reported
structures of dNCS-1 bound to strong (FD44, IGS-1.76)18,19 and
mild (CPZ) inhibitors (Fig. 8) shows that 3b indole group is
placed upper in the cavity enabling D37 participation. Moreover,
3b does not form strong H-bonds with T92 and Y52 or contact
the helix H10, as inhibitors do (Fig. 1 and Fig. 8b). Particularly,
the binding of PEG molecules to the C-terminal part of the
crevice stabilizes the helix H10 outside and parallel to it (Figs. 7b,
8a). While the strong inhibitors (Fig. 8a–b, d) use apolar rings to
properly contact L182 and L184 and stabilize the helix H10 inside
the crevice, compound 3b locates at L182 and L184 interaction
region the nitro and hydroxyl groups, hindering the stabilization
of the helix H10 inside. Therefore, our data suggest that
3b stabilizes the NCS-1/Ric8a complex keeping the helix H10
out of the crevice, and promoting the entrance and recognition
of Ric8a.

Finally, the structural comparison of the PPI modulators
indicate that these compounds can be divided in two parts: i) an
aromatic region that targets the molecules to an aromatic-enriched
area of the NCS-1 crevice and confers affinity (highlighted in
Fig. 8d), and ii) a variable region that confers function: inhibition
or stabilization. Inhibitors need long-enough hydrophobic moi-
eties that reach the helix H10 for interaction, and stabilizers need
polar groups that hinder the helix insertion (Fig. 8d).

Compound 3b in a Drosophila model of Alzheimer’s disease.
As we have established that compound 3b stabilizes the NCS-1/
Ric8a interaction and given the reported effects of this interaction
on regulating synapse number and synapse function15,16,18, we
assayed 3b on an in vivo model of synaptopathy, where synaptic
loss is a primary hallmark of disease20,21. The expression of
synaptotoxic amyloid aβ42arc in motor neurons leads to a
reduction in the number of synapses with respect to normal age-
matched neuromuscular junctions33. Moreover, the expression of
amyloid peptides in Drosophila neurons displays various symp-
toms reminiscent of Alzheimer’s disease including defective
locomotion, memory loss or reduced longevity34.

Table 1 Diffraction data collection and refinement statistics

Data collection
Space group P21
Cell dimensions
a, b, c (Å) 53.73, 55.60, 77.72
α, β, γ(°) 90.00, 94.97, 90.00

Resolution (Å) 42.35–1.78 (1.82–1.78)a

Rpim 0.045 (1.128)
CC1/2 0.998 (0.355)
I / σI 8.6 (0.7)
Completeness (%) 99.6 (199.8)
Wilson B-factor 30.33
Multiplicity 3.4 (3.3)

Refinement
Resolution (Å) 42.35–1.78 (1.80–1.78)
No. reflections 43787
Rwork / Rfree 21.35/23.18 (39.26/42.21)

Asymmetric unit content
No. atoms 6459
Protein (residue range) 2 (3–189 and 3–188)
3b/PEG/DMSO/Acetate 1/7/1/1
Calcium/Sodium ions 6/2
Water molecules 179

B-factors (Å2)
Protein 49.39
Ligand/ion 63.55

R.m.s. deviations
Bond lengths (Å) 0.014
Bond angles (°) 1.303

aDiffraction data collected from one crystal (Values in parentheses are for highest-
resolution shell)
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Aβ42arc overexpressing flies and the corresponding control
(LacZ expression) were fed with 3b or the solvent, DMSO,
throughout all life cycle (Fig. 9 and see Methods section). The
data confirmed that synapse counting was reduced in aβ42arc33,
but this pathological phenotype was largely suppressed in the 3b
feed flies. By contrast, 3b and its solvent DMSO showed no effect
on the control flies (Fig. 9a).

To measure the physiological impact of this synaptic recovery,
we evaluated fly locomotor activity. As described previously,
overexpression of human aβ42arc peptide leads to severe
locomotor dysfunction starting at day 15–20 post-eclosion35.
Remarkably, the locomotor deficit was recovered by 3b feeding
(Fig. 9b). Furthermore, the statistical analysis of the data does not
reveal a significant difference in the locomotor activity of control
flies fed with 3b vs. DMSO.

Discussion
Adaptability is the essence for evolution and guides the emer-
gence of diverse chemical structures. Modulators of protein-
protein interactions are relatively rare. We designed a dynamic

reversible system from one aldehyde and five acylhydrazides able
to uncover an unexpected protein-protein interaction stabilizer.

The reversible chemistry chosen, acylhydrazone exchange, was
prepared to work at low temperatures and neutral pH using
p-anisidine as a catalyst broadening its range of application to
other biological targets. Moreover, ultrafast NMR experiments
have allowed the detection of the carbinolamines (hemiaminals)
intermediates and could successfully be applied to determine the
mechanism of C=N double bonds formation of pyrazoles37 and
isoxazoles38.

The calcium sensor protein NCS-1 has been proved to be an
excellent DCL template directing the library to the synthesis of
compound 3b, the protein-protein interaction enhancer of the
NCS-1/Ric8a complex ever reported, still with a moderate bind-
ing affinity. Nevertheless, detailed NMR and X-ray studies have
shed light on the structural and chemical requirements to stabilize
the NCS-1/Ric8a complex.

We had previously shown how the interaction of NCS-1 and
Ric8a emerged as a potential therapeutic target for diseases
affecting synapses, due to its role in regulating synapse number
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and neurotransmitter release11,15,16,18. In this context, the in vivo
results show that 3b-mediated stabilization of the NCS-1/Ric8a
complex, indeed increases the number of synapses to normal
levels, exclusively in the presence of a synaptic pathology, which
is an essential requirement for any treatment directed to synapses.

Therefore, compound 3b constitutes a promising prototypic
probe for further research in the treatment of neurodegenerative
disorders such as Alzheimer’s, Huntington’s or Parkinson’s dis-
eases characterized by a decrease in the number and efficacy of
synapses that precedes neuronal death.
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Methods
Catalysis of reversible acylhydrazone formation. The kinetic experiment was
performed adding aldehyde 1(1.2 μL, 50 mM, DMSO), acylhydrazide 2b (3.6 μL,
1.5 M, DMSO), the catalyst (p-anisidine, p-phenylendiamine, aniline) or control
DMSO (1.0 μL) in buffer Tris (pH 7.4, 640 μL, 20 mM, 0.5 M NaCl, 1 mM CaCl2,
1 mM DTT) at 4 °C at 15 mM and 50 mM catalyst concentration. 5% of DMSO was
present in the final mixture. The absorbance data of 1 and 3b were measured for
seven hours by HPLC. The data were collected and treated by using a least squares
algorithm to fit the equation for pseudo-second-order (Supplementary Figs. 1, 2
and Supplementary Methods)

UF-NMR experiment. A solution of aldehyde 1 (125 μL, 0.2 M, DMSO-d6) and of
p-anisidine (2 μL, 6 M, DMSO-d6) were added to a mixture of DMSO-d6 (273 μL)
and Tris buffer D2O (100 μL), in a 5 mm NMR tube. Inside of a NMR tube was
assembled a fast mixing device for adding the acylhydrazide 2b (50 μL, 0.5 M,
DMSO-d6) (Supplementary Methods).

DCL preparation. Aldehyde 1 (1.2 μL, 50 mM, DMSO), the five acylhydrazides 2a–
2e (5 × 3.6 μL, 50 mM, DMSO), p-anisidine (1 μL, 12 M, DMSO) and buffer 20 mM
Tris, 0.5 M NaCl and 1 mM CaCl2, 1 mM DTT at pH 7.4 (750 μL) in 3.3 % DMSO.
The mixture was stabilized in 5 h at 4 °C. HPLC analysis was performed.

Protein-directed-DCL. Aldehyde 1 (1.2 μL, 50 mM, DMSO), the five acylhy-
drazides 2a–2e (5 × 3.6 μL, 50 mM, DMSO), p-anisidine (1 μL, 12 mM, DMSO) and
dNCS-1 in buffer 20 mM Tris, 0.5 M NaCl and 1 mM CaCl2, 1 mM DTT at pH 7.4
(66.7 μM, 750 μL, 1 eq.). The experiment is in 3.3% DMSO. The mixture was
stabilized for 5 h at 4 °C. Then, dNCS-1 was removed by ultrafiltration using an
Amicon Ultra filter (0.5–10 KDa). HPLC analysis was performed and the traces
were compared with the blank composition.

Synthesis of acylhydrazones 3a–3e. See Supplementary Fig. 3, Supplementary
Methods and Supplementary Discussion.

STD-NMR experiments. The experiments were performed using a deuterated
Tris (pH 7.9) buffered solution with an aliquot of DMSO-d6. A sample containing
10 μM of dNCS-1 and 1 mM of DCL species (molar ratio 1:100) was prepared. The
STD experiments were acquired at 281 K on a Bruker Avance 600MHz spectro-
meter equipped with a cryoprobe. The saturation frequency was set at δ −0.5 ppm
(aliphatic region) and the saturation time was 2 s. A spin lock filter was applied to
minimize signals from dNCS-1. The same conditions were used for the acquisition
of the STD-NMR spectra of the individual products with dNCS-1.

tr-NOESY and DOSY experiments. The experiments were performed on the
same samples and spectrometer, at 281 K. The tr-NOESY mixing time was fixed at
200 ms. The DOSY experiments were acquired with 16 gradient increments to a
final intensity decay of 90%.

Quantum mechanics calculations. Geometry optimization and energy calculation
of the stereoisomers 3a–3e and conjugated base from 3b. Supplementary Figs. 19
and 20, Supplementary Tables 6–8.

Fluorescence experiments. See Supplementary Methods.

Co-Immunoprecipitation assays and western blotting. hNCS-1 and V5-tagged
hRic8a were co-transfected into HEK293 cells (Dharmacon) using Lipofectamine
2000 (Invitrogen)13. After 24 h, after transfection, DMSO alone or the compounds
dissolved in DMSO (20 μM) were added to the culture cells. Then, 24 h after
transfection, cells were lysed with Lysis buffer (150 mM NaCl, 1.0% Nonidet P-40,
50 mM Tris, pH 8.0) in the presence of the compounds (20 μM), whose con-
centration was maintained throughout the immunoprecipitation assay. Precleared
lysates were incubated overnight (12 h) at 4 °C with mouse anti-NCS-1 (1:500; Cell
Signaling). Samples were subsequently incubated overnight with Protein-G-
Sepharose (Sigma-Aldrich), washed and eluted from the Sepharose. Samples were
analyzed by Western blot following standard procedures. The amount of V5-tagged
hRic8a bound to hNCS-1 was revealed by V5 antibody (1:1000, Invitrogen). 1/10
cell lysates before IP, were run in a Western blot and the NCS-1 input (anti NCS-1,
Cell Signalling 1:2000) and Ric8a input (anti V5, Invitrogen, 1:2000) were then
revealed. Original representative western blots are found in Source Data file.

Toxicity in primary cultured neurons. Cortical neurons were obtained from E14
wt mice (C57BL6J). Mice were maintained in accordance to European law and
following Hospital Ramón y Cajal´s animal guidelines. Cells were obtained using
the neuron isolation kit with papain (Thermofisher) and then maintained 7 days in
neurobasal medium and treated the last 24 h with 0.2, 2, 10 and 20 µM of CPZ or
3b or with the same volume of the vehicle DMSO. Three independent experiments
counting cells from three different wells per concentration were performed. To
analyzed cell death, neurons were fixed and stained with DAPI.

Parallel artificial membrane permeability assays. Methodology and data on the
permeability in the PAMPA-BBB assay of 10 commercial drugs and compound 3b,
linear correlation between experimental and reported permeability of commercial
drugs (see Supplementary Fig. 18, Supplementary Table 5 and Supplementary
Methods).

Protein expression and purification. See Supplementary Methods.

Crystallization and diffraction data collection. Detailed information is provided
in Table 1, Supplementary Fig. 17 and Supplementary Methods.

Fly locomotor activity assay. Fifteen-day-old males were placed individually in
locomotor activity monitor tubes (DAM2, TriKinetics Inc.) The DAM2 system
automatically counts the number of beam breaks for flies walking in a horizontal
tube over a specific period of time. This setup allowed for characterization of the
locomotor and behavior rhythms of Drosophila. The tubes contained fly food with
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100 µM compound 3b or same volume of DMSO. Flies were raised at 25 °C in 12-h
light/12-h dark. In the first 2 days flies get habituated and the next 2 days the
locomotor activity was quantified.

Synapse number quantification. The Drosophila neuromuscular junction (NMJ)
allows the accurate quantitative determination of the in vivo effects of drug
application on a single glutamatergic synapse. Each presynaptic motor neuron and
postsynaptic muscle fiber can be easily identified and has a stereotypical mor-
phology with minimum inter-individual variability.

We studied the 20-day old male NMJ from the third abdominal hemisegment.
Synapses were visualized under confocal microscopy by the nc82 marker (DSHB
Hybridoma Bank), which identifies the Bruch pilot protein, a constituent of the
presynaptic active zone. Throughout the text, we refer to nc82-positive spots as
mature synapses. Neuronal membranes, delimitating motor neuron terminals were
revealed by rabbit anti-HRP antibody (Jackson ImmunoResearch). Serial 1-μm
confocal images were acquired in a Leica TSC SP5 Confocal Microscope and
quantified by Imaris software (Bitplane). Experimental and control genotypes were
run in parallel, and quantifications were done blindly.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The atomic coordinates and structure factors of the hNCS-1/3b complex have been
deposited in the Protein Data Bank under accession code 6QI4. A reporting summary for
this Article is available as Supplementary Information file. The source data underlying
Figs. 2, 6 and 9 as well as Supplementary Figs. 1, 2, 9, 10, 15, 18 and Supplementary
Table 5 are provided as a Source Data file.
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